On homomorphisms of an orthogonally decomposable Hilbert space
نویسندگان
چکیده
منابع مشابه
Stability and hyperstability of orthogonally ring $*$-$n$-derivations and orthogonally ring $*$-$n$-homomorphisms on $C^*$-algebras
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
متن کاملA Note on Homomorphisms of Hilbert Algebras
We give a representation theorem for Hilbert algebras by means of ordered sets and characterize the homomorphisms of Hilbert algebras in terms of applications defined between the sets of all irreducible deductive systems of the associated algebras. For this purpose we introduce the notion of order-ideal in a Hilbert algebra and we prove a separation theorem. We also define the concept of semi-h...
متن کاملSuccessive Rank-One Approximations of Nearly Orthogonally Decomposable Symmetric Tensors
Many idealized problems in signal processing, machine learning and statistics can be reduced to the problem of finding the symmetric canonical decomposition of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor decomposition exactly, an...
متن کاملSuccessive Rank-One Approximations for Nearly Orthogonally Decomposable Symmetric Tensors
Many idealized problems in signal processing, machine learning and statistics can be reduced to the problem of finding the symmetric canonical decomposition of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor decomposition exactly, an...
متن کاملOn the (non)existence of States on Orthogonally Closed Subspaces in an Inner Product Space
Suppose that S is an incomplete inner product space. In [2] A. Dvurečenskij shows that there are no finitely additive states on orthogonally closed subspaces, F (S), of S that are regular with respect to finitely dimensional spaces. In this note we show that the most important special case of the former result—the case of the evaluations given by vectors in the “Gleason manner”—allows for a rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1986
ISSN: 0022-1236
DOI: 10.1016/0022-1236(86)90103-5